

Xue Hui

Department of Histology & Embryology

The Circulatory System

- Cardiovascular system (blood vascular system)
 - Heart
 - Artery
 - Capillary
 - Vein
- Lymphatic vascular system
 - Lymphatic capillary
 - Lymphatic vessel
 - Lymphatic duct

I General structure of the blood vessels

Tunica intima

Tunica media

Tunica adventitia

Drawing of a medium-sized muscular artery, showing its layers.

I General structure of the blood vessels

Large artery
 Medium-sized artery
 Small artery
 Arteriole

Il Artery Large artery

- Structure
 - Tunica intima
 - Tunica media
 - **40-70** layers of elastic lamina
 - Smooth muscle cells, collagenous fibers
 - Tunica adventitia
- Function

Carry the blood from the heart to the middle arteries

Transverse sections showing part of a large elastic artery showing a well developed tunica media containing several elastic laminas.

II Artery Medium-sized artery

Structure

- Tunica intima: clear internal elastic membrane
- Tunica media: 10-40 layers of smooth muscle cells
- Tunica adventitia: external elastic membrane
 Function
 - Regulate the distribution of the blood to various parts of the body

Internal elastic membrane External elastic membrane

Tunica intima

Tunica media

Tunica adventitia

II Artery Small artery

Structure characteristic

- Diameter:0.3-1mm
- Tunica intima: clear internal elastic membrane
- Tunica media: 3-4 layers of smooth muscle cells
- Tunica adventitia: no external elastic membrane

Function

 Adjust blood flow and blood pressure of organs and tissues

II Artery Small artery

Structure characteristic

- Diameter: less than 0.3mm
- Endothelial cell
- 1-2 layers of smooth muscle cells
- Function

Participate in microcirculation of tissue

Arteriole

II Artery

II Artery

Relationship between structure and function of vascular wall

Large artery

- 40-70 layers of elastic lamina
- Help to stabilize the blood flow
- Medium-sized artery
 - 10-40 layers of smooth muscle cells
 - Control the affluence of blood to the organs by contracting or relaxing the smooth muscle cells
- Small artery & Arteriole
 - Participate in microcirculation of tissue

III Capillary

Microstructure of the capillary
 Types of the capillary
 Functions of the capillary

III Capillary **Microstructure of the capillary**

Characteristic ♦ Diameter: 6~8µm Structural components A single layer of endothelial cell Basal lamina

III Capillary **Pericyte**

III Capillary Types of capillary

Continuous capillary
 Fenestrated capillary
 Sinusoid capillary

III Capillary Continuous capillary

Characteristic

- Tight junction of endothelium
- Continuous basal lamina
- Pinocytotic vesicles in cytoplasm of endothelial cells

Distribution

 Skin, connective tissue, striated and smooth muscles, lungs and brain

III Capillary Fenestrated capillary

Characteristic

- Fenestrated endothelium
- Continuous basal lamina
- Distribution
 - Tunica mucosa of stomach and intestine, some endocrine glands, glomerulus of kidney

III Capillary Sinusoid (discontinuous) capillary

Characteristic

- Greatly enlarged diameter (5~40µm)
- Fenestrated endothelium
- Wide gaps between two endothelial cells
- Continuous , discontinuous or no basal lamina
- Distribution

III Capillary

Function

 Interchanges of substances between blood and tissues

IV Vein

(a) Veins are generally more numerous than arteries and have a larger diameter and thinner walls than their accompanying arteries. In sections, their walls tend to collapse, so that their lumina frequently appear irregular.

(b) The boundaries between the three tunicae of a vein's wall are not as clear as in arteries, because the inner and external elastic membranes are often absent in veins.

(c) The tunica media is thinner than that of arteries and there are relatively less smooth muscle and elastic tissue and more collagenous fibers. The tunica adventitia is the thickest layer of a vein and constitutes the main part of the vein's wall.

(d) Many veins, especially veins in the limbs, are provided with semilunar-like valves which prevent back-flow of the blood.

WALL THICKNESS COMPARI

IV vein

Large vein

Characteristic

- Diameter: above 10mm
- Poor developed tunica media, contains a few layers of smooth muscle cells
- Thicker tunica adventitia, contains longitudinal bundles of smooth muscle

IV vein Medium-sized vein

Characteristic

- Diameter: 1~10mm
- Small amount of smooth muscle cells in tunica media
- Longitudinal bundles of smooth muscle cells in tunica adventitia

Medium-sized artery

Medium-sized vein

Diameter: 0.1~1mm

1-4 layers of smooth muscle cells

IV vein **Venule**

- Diameter: 50~200µm
- Little smooth muscle or no smooth muscle
- Thin tunica adventitia
- **Postcapillary venule**
 - Diameter: 10~50µm
 - Endothelium and very thin subendothelial layer
 - Loose endothelial junctions
 - Participation in inflammatory processes and exchange of cells and molecules between blood and tissue

Venule & Arteriole

Arteriole

A. Arteriole V. Venule

IV vein

Postcapillary venule

Î Postcapillary venule

IV vein **Vein valve**

- 2 semilunar folds of the tunica intima
- Be composed of connective tissue rich in elastic fibers
- Be covered by endothelium
 - **Direct the venous blood toward the heart**

IV vein **Vein valve**

IV vein **Vein valve**

Vein Valve H&E artèriole folds of the tunica intima forming the valve folds of the tunica intima forming the valve

V Heart

Structure components of the heart wall
 Endocardium

Cardiac valve

Myocardium

• Epicardium

V Heart Endocardium

- Endothelium Subendothelial layer
 - Dense connective tissue
 - Subendocardial

layer

• Loose connective tissue

V Heart Endocardium & myocardium

V Heart Myocardium & Epicardium

V Heart Myocardium & Epicardium

V Heart Cardiac valve

Conducting system of the heart

- Structural components
- Types of the cells
 - Pacemaker cell (P-cell)
 - Transitional cell
 - Purkinje fiber
- Function
 - Generates and conducts impulses in order to coordinate the heart beat

V Heart Conducting system of the heart

V Heart Purkinje fiber

- Master the classification, structure and functions of capillaries.
- Master the structure and functions of large artery, medium-sized artery, small artery and arteriole.
- Master the structure of heart wall and impulse-conducting system.
- Know the distinction between arteries and veins.