Blood and Haemopoiesis

Li Shulei

lishulei@tom.com

Department of Histology & Embryology

I Blood

1. General description

Blood cells/ formed elements

Erythrocytes/ red blood cells

Platelets

- leukocytes / white blood cells
- 🗆 Fluid
 - Plasma (intercellular substances+ water)
 - Serum= Plasma fibrinogen

Blood

Hematocrit tubes with blood. Left: Before centrifugation. **Right**: After centrifugation. The erythrocytes represent 43% of the blood volume in the centrifuged tube. Between the sedimented erythrocytes and the supernatant light-colored plasma is a thin layer of leukocytes called the buffy coat.

2. Blood cells

- **Erythrocytes (Red blood cell)**
- Leukocytes (White blood cell)
 - Granulocytes
 - Neutrophils
 - Eosinophils
 - **Basophils**
 - Agranulocytes
 - Lymphocytes
 - □ Monocytes
- Platelets

2.1 Erythrocytes (Red blood cell)

□ Concentration: 4.1 ~ 6 × 10¹²/L (male) 3.9 ~ 5.5 × 10¹²/L (female)

□ <u>Biconcave shape</u> without nucleus

- a large surface-to-volume ratio
 - facilitating gas exchange.

Deformability

- <u>meshwork</u> : membrane- spectrin- cytoskeleton
- reinforce the erythrocyte membrane
- permit the flexibility of erythrocyte

Erythrocytes (Red blood cell)

Hemoglobin (Hb): 120 ~ 150 g/L (male) 105 ~ 135 g/L (female)

□ Function: transport O₂ and CO₂

- oxyhaemoglobin oxygen carbon dioxide carbaminohemoglobin
- hemoglobin <u>carbon monoxide</u> carboxyhemoglobin

Erythrocytes (Red blood cell)

□ Haemolysis: hypotonic solution

Normal erythrocyte

Tumescent (swollen), spherical erythrocyte

Broken erythrocyte releasing hemoglobin

Erythrocytes

- Origin:bone marrow
- **<u>Reticulocytes</u>:**
 - ribosomal RNA (brilliant cresyl blue)
 - a netlike structure in cytoplasm.
 - 0.5 1.5% of total blood erythrocytes
- □ <u>Lifespan</u>:
 - 120 days
 - Wore-out cells are removed by macrophages

Erythrocytes

The meshwork not only reinforces the erythrocyte membrane but also permits the flexibility of erythrocyte.

Erythrocytes

An erythrocyte is passing through the wall of splenic sinusoid.

The meshwork makes the erythrocyte to adapt to the irregular shape and small diameter of capillaries.

Reticulocytes

Reticulocytes with net-like ribosomal RNA. Giemsa & brilliant cresyl blue stain

2.2 Leukocytes (White blood cell)

Classification

- Granulocytes (polymorphnuclear leukocyte)
 - <u>Neutrophils (neutrophilic granulocytes)</u>
 - **Eosinophil s (eosinophilic granulocytes)**
 - **Basophils (basophilic granulocytes)**
- Agranulocytes (mononuclear leukocyte)
 - Lymphocytes
 - □ <u>Monocytes</u>
- **Concentration: 6~10×10⁹/L**
- □ Function:
 - cellular and humoral defense within connective tissues.
 - amoeboid movement

Classification of leukocytes

Granulocytes with irregular nuclei & specific granules

Agranulocytes with regular nuclei & azurophilic granules

Neutrophils

Percentage: 60 ~ 70%

- □ <u>LM:</u>
 - Polymorphous nucleus with 2 ~ 5 lobes linked with fine treads of chromatin.
 - Specific granules
 - □ 0.3 ~ 0.8 µ m in diameter,
 - 🗆 reddish
 - Azurophilic granules
 - Pale purple with Giemsa stain
 - Iysosomes 0.5mm in diameter

Neutrophils

<u>EM</u>: Granules are surrounded by membrane.

Azurophilic granules:

large and high electron-dense

□ contain lysosomal enzymes and peroxidase.

Specific granules :

□ More, smaller and irregularly-shaped

contain alkaline phosphatase, bactericidal phagocytins and lysozymes.

Glycogen: yield energy in anaerobic environment

Neutrophils

Function

- mobile and phagocytic
- Defense against bacterial infection
- Participate in inflammatory processe
- □ <u>Lifespan</u>: 1~3 days
 - pus cells

Neutrophils and erythrocytes

Blood smear. Giemsa stain .

Each neutrophil has only one nucleus, with a variable number of lobes. There are lots of fine granules in cytoplasm. Specific granules are reddish, but azurophilic granules are pale purple. Giemsa.

Neutrophil

Specific granules

Eosinophils

- Percentage: 2-4%
- - 10~12 µ m, Bilobed nucleus
 - Large, salmon-pink, refractile granules
- - Eosinophilic granules :
 - unit membrane, crystal core, matrix
 - Major basic protein
- □ Function
 - Phagocytose antigen-antibody complexes
 - Weaken allergic reaction; Kill parasite
- Lifespan: 8~12 days

Eosinophils

typical bilobed nucleus and coarse cytoplasmic granules.

granules with crystalloid core and matrix

Basophils

- **Percentage: 0 ~ 1 %**
- - 12~15 µ m, S-shaped nucleus
 - Basophilic granules
- - electron-dense, bounded by a membrane
 - Heparin and histamine
- □ Function
 - mobile and phagocytic
 - Allergic and inflammatory reactions
- □ <u>Lifespan</u>: 12~15 days

A basophil with many basophilic granules covering the S-shaped nucleus.

N: Nucleus B: Basophilic granule M: Mitochondria G: Golgi complex

Lymphocytes

- Percentage: 20 ~ 30%
- - Small, medium-sized, large
 - Spherical nucleus: dark blue, indentation
 - Cytoplasm: a thin rim, basophilic, light blue
- □ <u>EM</u>
 - azurophilic granules; mitochonddra
 - small Golig complex ; many free ribosom
- Classification and functions
 - T cell: cellular immunity
 - **B** cell: humoral immunity
 - NK cell: attack virus-infected and cancer cells directly

Lymphocytes

Small lymphocyte

large lymphocyte

an intensely stained spherical nucleus with indentation. The slightly basophilic, light-blue cytoplasm appears as a thin rim.

nucleus (N), the nucleolus (Nu), mitochondria (M).

Monocytes

- Percentage: 3-8%
- - 12-20µm
 - Oval, horseshoe, or kidney-shaped nucleus with delicate chromatin
 - Cytoplasm: bluish-grey
- □ <u>EM</u>
 - Many fine azurophilic granules
 - rough endoplasmic reticulum
 - Few ribosomes
- □ <u>Function</u>

Migrate into tissues to become macrophages

This cell has an eccentric kidney-shaped nucleus with delicately stained chromatin. The cytoplasm is slightly basophilic, bluish-grey in colour.

Golgi complex (G), mitochondria (M), azurophilic granule (A).free ribosomes (R).

2.3 Platelets (Thrombocytes)

\Box (100~400) × 10⁹/L

2 ~ 4 µ m, anucleated, biconvex disk-like, fragments of cytoplasm of megakaryocytes,

Platelets

granulomere

platelets often appear in clumps

Hyalomere: peripheral light bluestained granulomere: central purple

Platelets (Thrombocytes)

- cell coat: adhesion
- Open canalicular system: easy to liberate active molecules
- dense tubular system:
 - microtubules: maintain the platelet's ovoid shape
 - Actin and myosin: platelet movement and aggregation
 - membrane-bound granules (serotonin or lysosomes), mitochondra and glycogen particles
- □ <u>Function</u>: forming thrombus &control hemorrrhage
- □ <u>Life-span</u>: 10 days

Platelets

Biconvex disk-like. EM. Vertical section.
Platelets

Platelets

II Haemopoiesis

1. Haemopoietic stem cells
Haemopoietic stem cells

(pluripotential stem cells)

Haemopoietic progenitor cell

(committed stem cells)

Haemopoietic precursor cells (blasts)
mature blood cells

Phase	Stem Cells	Progenitor Cells	Precursor Cells (Blasts)	Mature Celis
Early morphologic	Not morphologically distinguishable; have the general aspect of lymphocytes		Beginning of morphologic differentiation	Clear morphologic differentiation
Mitotic activity	Low mitotic activity; self-renewing; scarce in bone marrow	High mitotic activity; self-renewing; common in marrow and lymphoid organs; mono- or bipotential	High mitotic activity; not self-renewing; common in marrow and lymphoid organs; monopotential	No mitotic activity; abundant in blood and hematopoietic organs

Haemopoiesis

- 2. Haemopoietic tissues
- □ Mesoderm of the yolk sac
- Liver and spleen
- Iymphatic organs
- **Bone marrow:**
 - Red bone marrow: erythrocytes and precursors
 - Yellow bone marrow: adipose cells

Red bone marrow

Stroma

- Reticular fibers
- Reticular cells
- Macrophages
- hematopoietic cords
- sinusoidal capillaries
 - Discontinuous endothelia

A:adipocyte; E: erythrocyte in cluster; M: macrophage; S:sinusoid

Incomplete basement membrane

The passage of erythrocytes, leukocytes, and platelets across a sinusoid capillary in red bone marrow.

3. Maturation of blood cells

□ Basic process

- The problast stage
- The blast stage
- The mature stage

Maturation of erythrocytes

- Proerythroblasts
- Basophilic erythroblasts (Early erythroblasts)
- Polychromatophilic erythroblasts (Intermediate erythroblasts)
- Orthochromatophilic erythroblasts (Late erythroblasts , Normoblasts)
- Reticulocytes
- □ Mature erythrocyte

Maturation of erythrocytes

Late erythroblasts Reticulocytes erythroblast

Erythrocytes

Maturation of leukocytes

Summary ----- General rule

□ The cell volume decreases;

- The diameter of the nucleus decreases until they extruded from the cell or present lobes;
- The acidophilic haemoglobin or granules increases within the cytoplasm gradually.
- The cytoplasm becomes acidophilic or neutropholic, except for lymphocyte and monocyte.
- The cell loses mitotic ability, except for lymphocyte.

Maturation of Platelets

- Megakaryocytes
- Megakaryoblasts :
 - nuclear division without cytoplasmic division.
 - giant cells
 - smooth endoplasmic reticulum:

Maturation of Platelets

The characteristic size and granular cytoplasm of megakaryocyte.

Maturation of Platelets

A megakaryocyte showing numerous cytoplasmic granules. The demarcation membranes are visible as tubular profiles.

- Master the structures in LM & EM and functions of erythrocyte, five types of leukocytes.
- Master the concept of hemapoietic stem cell , hemapoietic progenitor cell and hemapoietic precursor cell.