# Chapter 5 Blood and hemopoiesis

#### Zhou Li Prof. Dept. of Histology and Embyrology

**Component: red and white blood cells,** platelet and plasma **Plasma: 90% water, plasma protein et al Function: circulatory fluid, maintain** microenvironment of cells Serum: **Blood picture:** examination of morphology, quantity and percent of blood cells and content of Hb

#### **Separation of blood cells**





#### I. Erythrocyte (red blood cell)

LM: 7.5 µ m, biconcave disk shape cell, without nuclei and organelles, filled with hemoglobin (Hb)

Hemoglobin: 120~150g/L (male)

110~140g/L (female)

<100 g/L anemia

Hb is a protein-containing Fe and functions
to blind and transport O<sub>2</sub> and CO<sub>2</sub>.

### **RBC and neutrophil (LM)**



### **RBC** and blood platelet (SEM)



### **Plasticity of RBC**



#### 红细胞的可塑性



#### 红细胞骨梁蛋白



**Characters:** ① **elasticity**, **plasticity** 

spectrin and actin (erythrocyte membrane skeleton)

- **② ABO blood type antigen**
- **③ hemolysis**
- Lifespan: 120 days

**Reticulocyte: residual ribosome** 

Percent: Adult 0.5%~1.0%

infant : 3%-6%

### Reticulocyte



#### II. Leukocyte (white blood cell)

#### **Classification of leukocyte**



### WBC of model (LM)





Eosinophilic granulocyte



Lymphocyte



Monocyte



1. Neutrophilic granulocyte (neutrophil)

Percent: 50%~70%

LM: sphere shape cell  $(10 \sim 12 \,\mu m)$ 

2 ~ 5 lobes of nucleus interlinked by a fine thread chromatin, pink-staining cytoplasm containing fine granules

### **RBC and neutrophil (LM)**



# Neutrophil (TEM)



**Nucleus left migration** 

**Nucleus right migration** 

**EM: two kinds of granules:** 

 larger and electron-dense azurophilic granules (lysosome) ,containing alkaline phosphatase and peroxidase **2** smaller irregularly-shaped and electronmedium specific granules, containing phagocytin and lysozyme Function: emigration from blood vessles to phagocytose bacteria and foreign bodies,

and form the major components of pus

Lifespan: 1~3 days

### 2. Eosinophilic granulocyte (eosinophil)

- LM: sphere shape cell (10~15 µ m), The usually two lobes of nucleus and the cytoplasm filled with eosinophilic granules
- EM: The granules surrounded by a unit membrane and an elongated crystalloid core inside, containing histaminase and arylsufatase

# Eosinophil (LM)



# Eosinophil (TEM)



Function: to break down the histamine and leukotrienes

to participate in the body against parasitic infections and allergic reaction

Lifespan: 8~12 days

### 3. basophi1ic granulocyte (basophil)

- LM: sphere shape (10~12 µ m), S-shaped irregular nucleus, large basophilic granules in cytoplasm
- EM: electron-dense the granules bounded by a membrane, containing heparin, histamine and leukotrienes
- Function: to participate in allergic and inflammatory reaction
- Lifespan:12~15 days

# **Basophil** (LM)



# **Basophil** (TEM)



### 4. Monocyte

# LM: 14~20 µ m, oval, horseshoe, or kidney-shaped nucleus, a delicate network-like chromatin, basophilic cytoplasm

EM: many fine azurophilic granules, some rough endoplasmic reticulum, few free ribosomes

## Monocyte (LM)



### Monocyte (TEM)



**Function:** penetrate into the connective tissue, and differentiate into macrophage, the liver, and **Kupffer cell, the nerve tissue, and** microglial cell Lifespan: 2 months or more

### 5. Lymphocyte

LM: sphere shape and small, medium and large kinds of cell, slightly basophilic cytoplasm, spherical nucleus, condensed chromatin

EM: azurophilic granules, few organelles, many free ribosomes

Function: provide the body with an immunological defense

### Small lymphocyte (LM and TEM)



### Large lynphocyte and monocyte (LM)



#### **III. Blood platelet**

**So call thrombocyte** 

Origin: cell fragments anucleated by cytoplasm of megakaryocyte in the bone marrow

LM:  $2 \sim 4 \mu$  m, basophilic cytoplasm including granulomere and hyalomere

### Megakaryocyte (LM)



### **Blood platelet (LM and TEM)**


**EM:** specific granule: platelet factor IV, platelet derived growth factor, PDGF dense granule: electron dense core, containing 5-HT, ATP, ADP, Ca2+, NA open canalicular system, dense tubular system (granulomere) microfilament and microtubules (hyalomere)

Function: to assist in haemostasis, the arrest of bleeding Lifespan: 7~14 days <50×10<sup>9</sup>/L : bleeding

### **IV. Bone marrow and hemopoiesis**

- Metabolism of blood cells
- 1.Hemotopoietic organ: yolk sac —>liver
- ----> spleen ----> bone marrow
- Erythrocyte system, granulocyte system, monocyte system and megakaryocyte-blood platelet system, lymphocyt system
  (lymphoid tissue and organ)

# 2. The structure of the bone marrow

### **2.1 Haemopoietic tissues**

- Organization: reticular tissue, hemopoietic cell and matrix cells
- Hemopoietic inductive microenvironment

### macrophage

matrix cells

fibroblast, reticular cell

mesenchymal stem cell

endothelium

**2.2 Blood sinus** 

# **Red bone marrow (LM)**



# **Erythroblastic islet (model)**



3.HemopoieticStemCellandHemopoietic Progenitor(1)(1)Hemopoietic Stem Cells(2)Hemopoietic Progenitor

# **Spleen colony**



### 4. Morphous Evolution During Hemopoiesis

#### General pattern:

4.1 Erythropoiesis erythroblastic islet

proerythroblasts

early erythroblast

intermediate erythroblast

late erythroblast

- reticulocyte

erythrocyte

# 4.2 Granulocytopoiesis

- granuloblast ——> progranulocyte ——> granular cell
- 4.3 Monocytopoiesis

# Megakaryocyte (LM)



# Megakaryocyte (TEM)



### 4.4 Thrombocytopoiesis

megakaryoblast→promegakaryoblast→ megakaryoctyes→thrombocyte

4.5 Lymphcytopoiesis

lymph stem cell bone marrow thymus

# Pattern of development of blood cell

## (model)

