Connective Tissue Proper

Li shulei

lishulei@tom.com

Department of Histology & Embryology

I. General characteristics

- Structural components
 - Cells,
 - Extracelluar matrix: fibers, ground substance and tissue fluid
- **<u>Classification</u>**
- Features
 - A small number of cells
 - A large amount of matrix
 - The cells have no polarity.
 - Be filled with blood and lymphatic vessels
 - Originate from mesenchyme
 - **Connect, hold, support other tisse**
 - Involved in nutrition, defense and repair

I. General characteristics

- **Origin: mesenchyme**
- Mesenchymal cell: stellate or fusiform, undifferentiated, multiple developmental
 - potentialities
- Functions
 - Connection
 - Support
 - Nutrition
 - Defence
 - Repair

Classification of connective tissue

- Connective tissue proper
 - Loose connective tissue
 - Dense connective tissue
 - Adipose tissue
 - Reticular tissue
 - Mucous tissue
- Cartilage
- **Bone**
- Blood

II. Loose connective tissue (Areolar tissue)

- **Distribution:** common and widely
- Structural characteristics
 - Many types of cells
 - A small number of fibers
 - Sponge-like
- **Components**
 - Cells: seven
 - **Intercellular fibers : three**
 - Ground substance

Loose connective tissue

1. Cells 2. Intercellular fibers 3. Ground substance

- Fibroblasts
- □ <u>Macrophages</u>
- Plasma cells
- □ <u>Mast cells</u>
- □ <u>Fat cells</u>
- □ <u>Undifferentiated mesenchymal cells</u>
- Leukocytes

1.1 Fibroblasts

Structure

- LM: large flat , branching processes, stellate; large, ovoid and pale staining nucleus; prominent nucleoli;
 - weakly basophilic cytoplasm
- EM: rich in RER , free ribosomes and Golgi apparatus

Function

Synthesis of fibers and amorphous ground substance

Fibrocytes : quiescent fibroblasts
LM: spindle-shaped ;

 a smaller, darker nucleus;
 an acidophilic cytoplasm;

EM: less rough endoplasmic reticulum undeveloped Golgi apparatus appear

Fibroblast

large flat, branching processes, stellate; large, ovoid and pale staining nucleus; prominent nucleoli; weakly basophilic cytoplasm HE and aldehyde-fuchsin staining

Fibroblast

crosssectional collagen fibrils

Nucleus ; 2.rough endoplasmic reticulum;
Golgi complex apparatus; 4.mitochondrium

Fibrocytes

Fibrocytes are elongated cells with thin cytoplasmic extensions and condensed chromatin.

Fibrocytes and fibroblasts

Fibroblasts and fibrocytes are different developmental or functional states of the same cells and involved in tissue repair.

1.2 Macrophages

Structure

LM: irregular; short, blunt processes; dark, oval or kidney-shaped nucleus acidophilic cytoplasm <u>phagocytosed particles</u>

EM: pseudopod(ium); lysosomes, Pinosomes

phagosomes

microtubules

microfilements

irregular; short, blunt processes; dark, oval or kidneyshaped nucleus; acidophilic cytoplasm; <u>phagocytosed</u> <u>particles or vesicles.</u>

Macrophages ingest the dye (trypan blue) and store it in their cytoplasm.

macrophages show an irregular surface and pseudopod.

Functions of macrophages

- mobility: chemotaxis , chemotaxin
- phagocytic activity : phagocytosis & pinocytosis
- □ secretion: lysozyme, interferon,
- complement.

A macrophage is capturing the bacteria by pseudopodia and processes.

Mononuclear phagocyte system

- Macrophages derive from monocytes.
- Mononuclear phagocyte system
 - Kupffer cells in liver
 - microglial cells in nervous system, Langerhans cells of the skin
 - osteoclasts in bone tissue

1.3 Plasma cells

- Distribution: digestive and respiratory tract ; serous membrane
- □ Structure
 - LM: ovoid or round in shape eccentric nucleus like a clock-face;
 - basophilic cytoplasm;
 - lightly-stained area near nucleus
 - EM: well-developed Gc; a pair of centrioles; RER; free ribosome
- **Origin: B-lymphocytes**
- Function: produce immunoglobulin/ antibody

Plasma cell

ovoid or round ; eccentric nucleus like a clock-face; basophilic cytoplasm; lightly-stained area near nucleus

Plasma cell

Plasma cell

1.4 Mast cells

- Distribution: <u>along small blood vessels</u>
- **Structure**

LM: large, ovoid or round; small and pale nucleus; coarse basophilic granules

EM: membrane-limited granules; scroll-like thin lamellae

heparin, eosinophil chemotactic factors (ECF), histamine;

leukotriene, slow-reacting substance(SRS)

Function: allergic reactions

Mast cells

Many mast cell walk along the capillaries like fish.

large, ovoid or round in shape; small and pale nucleus covered by coarse basophilic granules

The rectangle show one magnified granule with many scroll-like subunits inside.

Function of mast cells

Degranulated mast cell presents basophilic cytoplasm and small round nucleus.

1.5 Fat cells (Adipose cells)

Distribution

- Along blood vessels
- Singly or in groups
- □ <u>Structure</u>
 - A single large lipid droplet
 - Nucleus appears flattened
 - Cytoplasm becomes a thin rim

□ <u>Function</u>

Synthesis and storage of lipid

A single large lipid droplet Nucleus appears flattened Cytoplasm becomes a thin rim HE

If the specimens are fixed and stained with osmic acid, the fat drop appears as black or brown globules,

1.6 Undifferentiated mesenchymal cells

Structure Stellate fusiform

Function

- developmental multipotentiality of embiyonic mesenchymal cells
- Differentiate into various cells of connective tissue

Cell-types

- Neutrophils
- Eosinophils
- Lymphocytes
- Monocytes

Functions

Defense and protection

Collagenous fibers

- **Elastic fibers**
- **Reticular fibers**
2.1 Collagenous fibers

- White fibers, bundles, branches, interlace
- **Structure**
 - <u>LM:</u> pink; collagenous fibrils
 - EM: periodic transverse striations fibrils aligned in a parallel direction
- Chemical component
 - Collagen (type I, II and III)
 - produced by fibroblasts
- **<u>Function</u>**
 - Resistance to tension
 - **To keep the shape of the orgains**

Collagenous fibers

Collagenous fibers

HE and aldehyde-fuchsin staining

Collagenous fibers

2.2 Elastic fibers

- Yellow fibers
- **Structure**
 - - Solitary; irregular network;
 - □ weak pink, refractive threads (HE);
 - purple (aldehyde-fuchsin)
 - <u>EM</u>
 - Elastin and Microfibrils
- **<u>Function</u>**
 - Maintenance of elasticity

Elastic fibers

HE & aldehyde-fuchsin staining

Elastic fibers

C. Elastic fibers

EM

ideograph

Elastin is an amorphous substance of varying electron-density, and microfibrils gather in small bundles at the periphery of each fibre.

Function of elastic fibres

2.3 Reticular fibers

- Argyrophil fibers
- **Structure**
 - LM: thin collagenous fibers ; delicate net; black threads (silver slats)
 - EM: periodic cross-banding
- Chemical component
 - Collagen (type III)
 - Carbohydrate
- □ <u>Function</u>
 - To create a flexible network in organs that are subjected to changes in form or volume

Reticular fibers

Section of an adrenal cortex, silver stained to show reticular fibers.

Reticular fibers

Reticular fibers & collagenous fibers

Each fiber type is composed of numerous smaller collagen fibrils. Reticular fibrils are narrower in diameter than collagen fibrils of collagen fibers.

3. Ground substance

- □ jelly-like amorphous homogenous substance
- □ lie between the cells and fibres
- component
 - Proteoglycan
 - Glycoprotein
 - **Tissue fluid**
- □ Function:
 - Iubricant
 - a barrier to the penetration of invaders

3.1 Proteoglycan

Structure

- Linear polysaccharide
- Component:

core protein, link protein,

glycosaminoglycans (GAG) : hyaluronic acid, chondroitin sulfate, keratin sulfate, heparan sulfate and

dermatan sulphate

<u>Functions</u>

- a molecular sieve to exclude or entrap molecules of different sizes
- a physical barrier to prevent the spread of bacteria and other microorganisms.

Structure of proteoglycan and molecular sieve

3.2 Glycoprotein

□ <u>Structure</u>

- Globular protein
 - Branched chains of monosaccharides
- 🛛 Туре
 - Fibronectin
 - Laminin
- **<u>Functions</u>**
 - Interaction between cells
 - Adhesion of cells to their substrate (e.g. laminin)

The molecular structure of glycoproteins

Monosaccharide

Glycoproteins are globular protein molecules to which branched chains of monosaccharides are covalently attached.

Laminin participates in the adhesion of epithelial cells to the basal lamina. Immunocytochemical staining shows laminin in basement membranes.

3.3 Tissue fluid

There is a decrease in hydrostatic pressure and an increase in osmotic pressure from the arterial to the venous ends of blood capillaries. Fluid leaves the capillary through its arterial end and repenetrates the blood at the venous end. Some fluid is drained by the lymphatic capillaries.

III. Dense connective tissue

Structural characteristics

- Fewer cells
 - More collagenous fibers
- Some elastic fibers
- **Classification**
 - **Dense regular connective tissue**
 - Dense irregular connective tissue
 - Elastic tissue
- Functions
 - Resistance and protection

1. Dense regular connective tissue

- Distribution: tendons, ligaments, cornea.
- Structural characteristics
 - Bundles of parallel collagenous fibers
 - A small quantity of ground substance
 - Fibroblasts
- □ <u>Function</u>
 - Resist stresses in the same direction
 - Offer resistance to traction forces

Dense regular connective tissue

2. Dense irregular connective tissue

Distribution:

- Dermis, capsules surrounding organs,
- Periosteum, perichondrium.
- □ <u>Structural characteristics</u>
 - Collagenous fibers facing different directions
 - 3 -dimensional network
- Function
 - Resist stress from all directions

Dense irregular connective tissue

Dermis HE and aldehyde-fuchsin staining

3. Elastic tissue

Distribution:

- yellow ligaments of the vertebral column
- suspensory ligament of the penis
- Structural characteristics
 - Thick, parallel elastic fibers
 - Thin collagen fibers
 - Flattened fibroblasts

□ <u>Function</u>

Elasticity

Elastic tissue

Elastic tissue aldehyde-fuchsin staining

IV. Adipose tissue

Structural characteristics

- Fat cells form large aggregations
- Lobule, septa, rich in blood supply
- Distribution
 - mesentery, hypodermis, perirenal region
- **Classification**
 - Unilocular (common or yellow) adipose tissue
 - Multilocular (brown) adipose tissue

□ Functions

- Metabolic energy reservoir
- Shock-absorbent padding
- Insulating layer to conserve body heat

Unilocular(yellow or common) adipose tissue

- **Distribution : adults**
- □ Fat cells
 - One large central lipid droplet
 - A thin ring of cytoplasm
 - Eccentric and flattened nucleus
- □ <u>Function</u>
 - large depot of energy

Brown (multilocular) adipose tissue

Distribution: human embryo and newborn

□ <u>Fat cells</u>

- Numerous small lipid droplets
- Abundant brown mitochondria (containing colored cytochromes)
 - Sepherical and central nucleus

Functions

produce heat

Brown adipose tissue

PT stain

ΕM

many small lipid droplets; Abundant mitochondria; round central nucleus

V. Reticular tissue

Distribution:

- Iymphatic organs
 - bone marrow
- Reticular cells
 - Stellate
- Reticular fibers
 - Fibrillar network
- **Function**

- architectural framework
 - a special microenviroment for

Reticular tissue

Section of an lymphatic tissue, silver stained to show reticular tissue

Mucous tissue

Distribution: umbilical cord

Component

- abundant ground substance hyaluronic acid
- few fibres
- Fibroblasts

Fibroblasts immersed in a very loose extracellular matrix.

- □ <u>Master the structure and functions of main cells</u> <u>in loose connective tissue</u>.
- □ Understand the structure and functions of fibers and ground substance in connective tissue.
- □ Understand the features and classification of connective tissue.
- Know the structural characteristics and functions of dense connective tissue, adipose tissue and reticular tissue.